Developer's Guide

Table of contents

101100 [FTox 1 o o APPSR 2
2 Before you begin: Setting up the ENVIroNmMeNt...........cccoeoveeneeie e e 2
B SIMPIE USE...ei et 2
4 ADOUL IMAagECOMIMANG.........eiuieeiieieie ettt 3
5USING GraphiCSMagiCK........coiuieiiiieieeie et s nae e 3
6 REUSING OPEIALIONS......ccueiiieeitieeieesieeeie e st et esee et e s e e e sse e e teesbeeeseesseesnseesraeanseennes 4
7 Adding Operations to OPEratioNS..........c.cceeiueeiieieereeieseeseeseeseesre e seesreeaesseesreeneens 5
8 DYNAMIC OPEIALiONS......cceeiveeiieeiesiiesieeeeseesteeseesseesseeeesseesseesessseesseassesseessessesseessenssnns 6
9 CAPLUINNG OULPUL. ...ttt sttt st bbbt e e e e e e nnesne e 6
Ol 1] 0o ST U RS RSTRPTPPTRTN 6
11 USING BUFFEredIMEAJES........coiieieeeeiieieee ettt s 7
12 ASYNCAIONOUS EXECULION.......cciuiiiiie ittt sttt e e snneeree s 8
13 Parall€l PrOCESSING......cccveiieieee ettt esre e re e 9
13.1 THE PrOCESSEXECULONccveeueeieeuieiesieste sttt sttt st st e et st sbe e 9
13.2 Waiting fOr process terMINaLiON..........cccueverrerierieresiesiesieeeeee e 10
13.3 Exit status of finished asynChronouS ProCESSES...........coeeeeeeriereesierie e 11
24 UBITITIES. .ttt sttt e e et e st e be st e e beeseese e e eneeneessennenreas 11
14.1 1Mage INFOrMELION.......c.eiiiiecee et 11
14.2 FIENaMEL OAOEYcoeeieieie ettt 12
14.3 FilenamePatterNRESDIVEYcocoiiririiieeie e 12
TN 2T (0 0[O0 01V o (= oS 13

15 DEOUGGING. ..t 14

Developer's Guide

1. Introduction

This guide is an introduction to the im4javarlibrary. Y ou should be familiar with
java-programming and should know how to read the APl documentation. Also, thisisno
guide for the usage of the underlying tools (ImageMagick, GraphicsMagick and so on).
Y ou should be familiar with them and know how to read the respective documentation.

The basic architecture of im4javais quite simple. It boils down to calling al underlying
toolssimply by using aPr ocessBui | der -object. All the magic of im4djavaist to hide
the complexities. If you have just one simple call of an external tool in your program, you
might be better of by hardcoding the Pr ocessBui | der -call yourself. If you don't need
the simplicity or the advanced features of the imdjava-library, your code will certainly be
faster and more efficient.

2. Before you begin: Setting up the Environment

To use the im4java-library, you should add the im4java-jarfile to you classpath. Thisis
thefirst part of the setup. The second part is optional and only necessary, if the tools you
want to use (e.g. convert orexi ft ool) arenot onyour PATH. Thisistypicaly a
problem on Windows-systems.

To setup your searchpath for the tools you have three options:

e Set the environment-variable IM4JAVA TOOLPATH. This variable should contain a
list of directoriesto search for your tools separated by your platform-pathdelemiter
(on*NIX typically ":", on Windows";").

e Globally set the searchpath from within your java-progam:

String nyPat h="C:\\ Prograns\\ | nageMagi ck; C:\\ Prograns\\ exi ftool ";
ProcessStarter. set d obal Sear chPat h(myPat h) ;

Thiswill override any values set with IM4AJAVA TOOLPATH.
e Set the search path for an individual command:

String inmPat h="C:\\ Prograns\\I| nageMagi ck";
ConvertCmd cnd = new Convert Crd() ;
cnd. set Sear chPat h(i mPat h) ;

Thiswill override any values set with IM4AJAVA_TOOLPATH or with
ProcessStarter. set d obal Sear chPat h() .

Note that | also encountered a problem using OpenJDK with alanguage-setting of LANG=de_DE.UTF-8. With LANG=C
everything worked fine. With SUN's JDK, there were no problems regardless of the language-setting.

3. Smple Use

Page 2

http://im4java.sourceforge.net/api/
http://www.imagemagick.org
http://www.graphicsmagick.org/
../tools/index.html

Developer's Guide

Basically, to use im4java, you need objects of two classes. an | mageComrand like
Convert Cnd, and an Oper at i on likel MOper at i on. Thel nageConmand is
more or |less static, you would create an instance once and reuse it for the lifetime of your
program. Exceptions to this rule are more advanced use cases, see the section below about
parallel processing. In contrast, the Operation is the object wrapping all the commandline
options you intend to pass to the given command. So you would typically create one
Oper at i on for every action (resizing, conversion) you intend to do.

As an example, consider resizing an image:

/1 create comand
ConvertCnd cnd = new Convert Crd() ;

/] create the operation, add i mages and operators/options
| MOper ati on op = new | MOperation();

op. addl mage(" myi mage. j pg");

op. resi ze(800, 600) ;

op. addl mage(" nmyi mage_smal | . j pg");

/1 execute the operation
cnd. run(op);

4. About ImageCommand

All command-classes subclass | mageConmand, which itself subclasses

org. i ndj ava. process. ProcessSt art er . Thelatter class wraps

j ava. | ang. ProcessBui | der, handlesinput and output streams and supports
asynchronous execution.

The | mageCommand class adds methods useful for all command-classes, things like
support for reusing operations or for dynamic operations.

Note that | mageConmand is not stateless. In the default setting, it captures everything
written to stderr. It also holds an internal process ID (unrelated to any operating system
PID) viaPr ocessSt ar t er . Nevertheless, if you only usethe | mageComrand in
synchronous mode, you can reuse the instance.

5. Using GraphicsM agick

GraphicsMagick isafork of ImageMagick. GraphicsMagick has a number of advantages
compared to ImageMagick, the most prominent isit's superior performance. Since the
fork ImageMagick has improved the expressive power of it's command-line syntax,
therefore, an ImageMagick commandline is not necessarely compatible with
GraphicsMagick. But for most single-operation conversionsit till is.

With imdjava, you have three options if you want to use GraphicsMagick:
» use GraphicsMagick explicitely, passing the command at object-creation:

Page 3

http://www.graphicsmagick.org/
http://www.imagemagick.org

Developer's Guide

G aphi csMagi ckCrd cnd = new Graphi csMagi ckCnd(" convert”); .
« use GraphicsMagick explicitely, using wrapper classes. Convert Crd cnd = new
Convert Crd(true);.
» decide at runtime: setting the system-property imdjava.useGM to true will select
GraphicsMagick at runtime. Y ou can use this feature to compare the results and
timings of both toolsets, provided that the commandline is compatible.

6. Reusing Oper ations

In the example above, image-names were hard-coded. The imdjava-library supports an
aternative use. Instead of hard-coding the image-names, you just add placeholders and
resolve the image-names at execution time. This alows the reuse of operations for
example within aloop.

The following example extends the example of the first section and loops over all images
passed as method parameters:

public void resizel mages(String... plnmgeNanmes) {
/] create command
ConvertCnmd cnd = new Convert Crd() ;

/'l create the operation, add i nreges and operators/options
| MOper ation op = new | MOperation();

op. addl mage() ;

op. resi ze(800, 600) ;

op. addl mage() ;

for (String srclnage: pl mageNanes) {
int lastDot = srclnage.lastlndexOf('.");
String dstlmge =
srcl mage. substring(l,lastDot-1)+" snall.jpg";
) cnd. run(op, srcl nage, dst | mage) ;
}

Y ou can pass an arbitrary number of image-namesto cnd. r un() , you can even pass an
array of image-names. In the latter case you have to cast the array to Cbj ect [] , e.g.
cnd. run(op, (Object[]) ingNanes).

Notethat op. addl mage() isactualy ashort form for
op. addl mage(Oper ati on. | Mc_PLACEHOLDER) . You can aso add more than
one placeholder at the same time with op. addl mage(i nt count).

Theop. addl mage(String. .. i nages)-method aso supports ImageMagick's
read-modifiers. Adding aread-modifier for hard-coded imagesis of course
straightforward (you just add it to the argument string). For placeholders, you add only
the read-modifier. The following two lines of code therefore have the same effect:

op. addl nage(" [300x200] ") ;
op. addl mage(Oper at i on. | MG_PLACEHOLDER+" [300x200] ") ;

Page 4

Developer's Guide

Thetest-caseclassor g. i mdj ava. t est. Test Case7 usesread-modifiersto crop the
source-images prior to composing them:

7. Adding Operationsto Operations

Im4java supports a second variant of operation-reuse. Y ou can define one Oper at i on
and just add it to another one. The following snippet defines a
rotate-resize-frame-operation and adds it to another operation:

Adding operations as just described isvalid for all supported im4java-tools.
ImageMagick additionally supports options and operations within parenthesis thus
limiting the effect of settings and operators on everything within the parenthesis. Y ou add
parenthesis with the methods op. openQOper at i on() and

op. cl oseOperation():

An aternatative way of coding thisis:

Page 5

http://www.imagemagick.org

Developer's Guide

row. addSubQper at i on(frane) ;
row. p_append() ;

Theop. addSubQper at i on() -method just adds the surrounding parenthesis.

8. Dynamic Operations

Dynamic Operations are an advanced technique. Sometimes you only want to apply some
operations to images fulfilling some requirements. ImageMagick itself has some special
option-flags for this purpose, e.g. an image is only scaled (down) if it has alarger size
than the target-size. For special cases not directly supported by ImageMagick, you can
make use of im4java's Dynamic Operations. Basically, you implement the interface

org. i ndj ava. cor e. Dynam cQper at i on, which has exactly one method
resolveOperation(). At execution time, this method gets all argument images passed as
parameters, and it must return an OQper at i on. The returned object could aso be null, in
this case no Qper at i on isadded.

Thetest-caseclassor g. i mij ava. t est . Test Casell shows an example of
dynamic operations. In this case, the despeckl e() method isonly added for images
with a high iso-noise level.

9. Capturing Output

The default behaviour of all | mageConmandsisto pass all output of the wrapped
commands to stdout, and to capture everything from stderr in an

CommandExcept i on-object. You can change this behaviour with the methods

| mageCommand. set Qut put Consuner (Qut put Consuner oc) and

| mmgeCommand. set Er r or Consuner (Err or Consuner ec) . Both

Qut put Consuner and Er r or Consuner areinterfacesin the

org. i mdj ava. pr ocess-package with single methods (consunmeQut put () and
consuneError ()). These methods just read everything from the argument

| nput St r eam

In the process-package there is an utility-class called Ar r ayLi st Qut put Consuner
which collects al lines of output in a String-array.

10. Piping

Most commandline tools alow piping of input or output. With the im4java-library you
can create instances of or g. i m4j ava. pr ocess. Pi pe to mimic this behaviour. This
classimplements the Qut put Consuner and Er r or Consuner -interfaces mentioned
above and are useful for piping the output of acommandline tool to an Qut put St r eam
(e.g. anetwork-socket). To use the pipe, instantiate it with an Qut put St r eamand use
the method | mageConmand. set Qut put Consuner (pi pe).

If you want to provide input to stdin of acommandline tool, you have to create a

Page 6

http://www.imagemagick.org

Developer's Guide

pipe-object initialized with an | nput St r eamand use the method
I mageComrand. set | nput Provi der (pi pe) . The pipewill read from the
I nput St r eamand write to the stdin of the respective | nageConmmand.

Thetest-caseor g. i mdj ava. t est. Test Casel0 features pipes, reading from one
image and writing to another. In real-life, you would of course process the files directly,
but the example just wants to demonstrate what to do:

11. Using Bufferedl mages

A Buf f er edl mage isin away the java native representation of an image-object. No
commandline tool can deal directly with aBuf f er edl mage. The good news is that
im4java uses objects of type Buf f er edl mage transparently, if you use pass these
objects at invocation time:

Note that the above use of Buf f er edl magesworks fine for input-images. If you need
towriteto aBuf f er edl mage, you must pipe the output of the commandline-tool to
stdout, create an instance of the class

org. i mdj ava. core. St reankBuf f er edl mage and set it asthe

Qut put Consuner of the command:

Page 7

Developer's Guide

12. Asynchronous Execution

Long running operations belong into a seperate thread, especially in graphical
applications. The imdjava-library supports asynchronous execution with and without
callbacks.

The latter caseis simple (fire-and-forget). Befor you start the command, you just set the
aynchronous-mode to true:

In this case, you will know nothing about success or failure. If you need feedback (e.g.
because you want to asynchronously convert afile and load the result into awindow), you
must write a class implementing the interface

org. i ndj ava. process. ProcessEvent Li st ener . Thisinterface defines three
methods. pr ocesslniti ated(),processStarted() and

processTer m nat ed() . Thefirst method is called synchronously from the original
thread calling the run-method, the latter two methods are callbacks from the
asynchronousthread. Seeor g. i n¥j ava. t est . Test Casel6 for acomplete
example.

Withcnd. set AsyncMode(t rue) you only need minimal code-changes for
asynchronous execution. If you prefer to control the flow of execution yourself, you could
use some standard methods fromj ava. uti | . concurr ent to control execution:

Developer's Guide

The test-case 16awill give you a complete example. The third variant, test-case 16b
replaces the standard executor returned by

Execut or s. newSi ngl eThr eadExecut or () with aninstance of class
org.i mdj ava. process. ProcessExecut or . For adiscussion of this class,
proceed to the next section.

13. Parallel Processing

The use case described aboveisfine for typical graphical applications with one
asynchronous thread. In contrast, if you want to convert a number of files
asynchronously, additional problems arise. Consider the following piece of code:

/'l load inmages into an array, e.g. froma directoy
ArraylList<String> i mages = | oad(nyDir);

/1 convert all inages
ConvertCnmd cnd = new Convert Crd() ;
crmd. setAsyncI\/bde(true)
Qperation op =
for (String |rrg |rrages) {
String outfile = .
cmd. run(op, i ng, outflle)

}

Although thiswill run perfectly fine, this code will flood your system with parallel
convert-processes, making your system unusable for awhile. So one of theissuesis
ressour ce management. Another issue is that you don't know when you are finished. In
addition, you don't know which of your conversions succeeded and which failed.

The following sections deal with these three issues. Thisis advanced stuff, and you might
not even need it. If you have to convert multiple images, you could first try to use the
classorg. i mdj ava. util s. Bat chConvert er, which uses the building blocks
described below. The class Bat chConvert er iscovered here.

13.1. The ProcessExecutor

Theclassesinj ava. uti | . concurrent addresstheseissues. All classes returned by
thefactory classj ava. uti | . concurrent . Execut or s operate on threads. They
provide methods to queue and start requests up to a given limit, and also allow you to
stop the queue and destroy running threads.

There is one big drawback with these thread-based executors. Once an | mrage Command
is running within ajava-thread, the thread will not be killable due to the active process.
Therefore you should not use any of the standard executors, but use an instance of the
classor g. i ndj ava. process. ProcessExecut or . A basic usageisvery simple,
the example above then looks like this:

/[l load inmages into an array, e.g. froma directoy

Page 9

Developer's Guide

ArrayLi st<String> i mages = | oad(nyDir);

[l convert all inmages

ProcessExecut or exec = new ProcessExecutor();
Qperation op = ...;

for (String ing:inmages) {

String outfile ce
new Convert Crd() ;

Convert Cmd cnd
ProcessTask pt cnd. get ProcessTask(op, i ng, outfile);

exec. execut e(pt);

}
exec. shut down() ;

The default constructor of Pr ocessExecut or will query the number of processors on
the system and limit the number of parallel running processes to that number. Y ou can
also pass an integer to the constructor if you want to set the limit yourself.

TheclassPr ocessTask extendsj ava. uti |l . concurrent. Fut ureTask. You
can use all the standard methods of this class, e.g. to query results or to wait for
termination.

13.2. Waiting for process termination

It is usually important to know when your processes have finished, maybe to give
feedback to a user by updating a progress bar or to start some follow-up activity. If the
processes take too long, you might also consider killing them.

Since Pr ocessExecut or extends

java. util.concurrent. ThreadPool Execut or, you can use the standard
methods provided by this class. If you want to block until your processes terminate, you
would use the following code snippet (this one extends the example above):

ProcessExecut or exec = new ProcessExecutor () ;
for (String ing:inmges) {

exec. shut down() ;

if (exec.awaitTerm nation(210, Ti neUnit. SECONDS)) ({
Systemerr.println("processes tern nated on their own");

} else {
Systemerr.println("trying to cancel all running processes ...");
exec. shut downNow() ;

}

As an dlternative to the blocking awai t Ter m nat i on() -call you could also subclass
ProcessExecut or and implementit'st er m nat ed() -method. Then you will
receive a callback once all processes have terminated.

One final warning: the code implementing the parallel processing of commandsis new
and therefore untested in the wild. During development, a number of race-conditions
came up (and were solved), but feedback on stability, functionality and implementation is

Page 10

Developer's Guide

highly welcome.

13.3. Exit status of finished asynchronous processes

The last issue with asynchronous processes is the exit status. For a single asynchronous
process thisis quite simple, you would implement aPPr ocessEvent Li st ener and
useit'sprocessTer m nat ed() -method (see the section Asynchronous Execution
above).

For multiple parallel process the situation is a bit more complicated. Y ou have to link the
processT erminated-event with the correct process. The class Pr ocessEvent
implements a number of methods which help to identify the process. Oneis
ProcessEvent. get PI D() . ThePID isaninterna field of each | mageConmand.
Y ou can set thisfield explicitly overriding the PID set during object-creation. Y ou can
also query the | mageConmmand object itself with

ProcessEvent. get ProcessStarter () (remenberthat ProcessStarter is
the base-class of | nrageConmmand).

For a compl ete example using these methods, see the class
org. i ndj ava. test. Test Case21.

14. Utilities

This section describes a number of utility-classes which facilitate the coding.

14.1. Image I nfor mation

If you only want to query image-information (e.g. width and height), you could typically
usetheclass| dent i f yCnd, wrapping ImageMagick's identify-command. Instead of
using this class directly, you could instead use the | nf o class. The following
code-snippet demonstrates its use:

Info i magelnfo = new Info(filenane,true);
Systemout.println("Format: " + inmagel nfo. getl mageFor mat (
System out . pri nt "Wdth: " + inmagel nfo.getlmgeWdth());
System out.prin "Height: " + imagel nfo.getl mgeHei ght (
System out.prin "Ceonetry: " + imagel nfo.getlmgeGeone
System out.prin " 8ept h: " + imagel nfo. get | mageDept h(

I n
In
In
In
I n ass: " + imagel nfo.getlnaged ass(

(
(
(
. ());
System out. prin ());
The second parameter (true) in the example requests basic-information. Thisisabit faster
than requesting and parsing the complete (verbose) output of the class| ndent i f yCnd.
Seethetest-caseclassor g. i mdj ava. t est . Test Case8 for acomplete example.

Prior to version 1.3.0 the implementation of the | nf o-class was severely flawed. It did
not take into account that there are image-formats like TIF or GIF that support multiple
images (ImageMagick calls them scenes) within asingle file. As a consequence, the

Page 11

Developer's Guide

method

i magel nf o. get | mageW dt h()

returns the image-width of the first scene (from basic-information), whereas the method
i magel nf o. get Property("Wdth")

will return the image-width of the last scene (from complete information). Starting with
version 1.3.0, there are new methods with an additional parameter, the scene-number, e.g.

i magel nf o. get | mageW dt h(3)
i magel nf o. get Property("Wdth", 3)

To query the number of scenes use the method get SceneCount () . Note that
information about multiple scenes is only available with complete-information.

Note that parsing the output of i denti fy -ver bose isinherently flawed, since this
output is meant to be human-readable and not an an interface for computer programs. The
parser makes a number of assumptions about the output, some of them are known to be
incorrect in special situations (e.g. multi-line attribute-values with embedded colons).
Also note that basic-information should always be correct, since it uses a different method
to aquire the information. As an alternative to the | nf o-class you might consider using
the wrapper class Exi f t ool Cnd for exi f t ool .

14.2. Filenamel oader

Theclassorg. i mdj ava. util s. Fi | enaneLoader isuseful for batch-processing a
number of filesfrom adirectory. The core method ispubl i ¢ Li st<Stri ng>

| oadFi | enames(String pDir).Itloadsall filesfrom the given directory into a
list of strings.

The constructor accepts an Ext ensi onFi | t er . You can instantiate your own filter as
in the example below or use one of the predefined filters of the ExtensionFilter-class.

ExtensionFilter filter = new ExtensionFilter("jpg");
filter.setRecursion(true);
filter.ignoreDotDirs(true);

Fi | enanmreLoader | oader = new Fil enaneLoader (filter);
List<String> files = | oader. | oadFil enames(nydir);

As aways, you should check the API-documentation for all the features of this class.

14.3. FilenamePatter nResolver

When converting multiple files, the target filename usually depends on the source
filename. For example a standard conversion from jpg to tif would keep the filename and

Page 12

http://im4java.sourceforge.net/api/

Developer's Guide

just change the extension. Or al converted files should additionally go to a separate
directory.

Thisiswheretheclassor g. i mj ava. util s. Fi | enanePat t er nResol ver is
useful. The following snippet will convert all argument-filesto tif.

The FilenamePatternResolver recognizes the following escape-sequences within it's
pattern:

%P: full pathname of source-image (i.e. the directory)

%p: last component of %P

% : full filename without directory part

%f: filename without directory part and extension

%e: only the extension

%D: drive-letter (on windows systems). Not available for source-fileswith an
UNC-name.

14.4. BatchConverter

Theclassorg. i ndj ava. util s. Bat chConvert er isautility-classfor
client-applications. It will convert agiven list of filesin paralel making use of al
available processors to speed up execution. It is not well suited for web-applications,
since you don't want a single request to use up all of your ressources.

Usage of this utility-classis straightforward. First you load your filesintoaLi st . This
could be from a GUI-application where a user selects multiplefiles. Or thelist could
contain all filesfrom a given directory (see the section Filenamel oader above).

Page 13

Developer's Guide

Li st<String> i mages=l oader. | oadFi | enanmes(dir);

After you have thelist, you create your Bat chConvert er and useit'sr un() -method
to process the images.

/1 create a sinple thunbnail operation
op = new | Mperation();

op. si ze(80);

op. addl mage() ; /1 placehol der input filenane
op. t hunbnai | (80);

op. addl mage() ; /| pl acehol der output filenanme

/] create a tenplate for the output-files:

[/ we put themin targetDir with the sane filenane as the origina
/1 i mages

String tenpl ate=targetDir+"%"

/1 create instance of BatchConverter and convert inages
Bat chConverter bc = new Bat chConverter (Bat chConverter. Mbde. PARALLEL) ;
bc. run(op, i mages, targetDir+"%") ;

SinceBat chConvert er extends Pr ocessExecut or, you can use the methods
described in the section about process termination to wait for the termination of the
command (note that the shut down() -method is called automatically).

TheclassBat chConvert er knows three modes of operation:

Bat chConvert er. SEQUENTI AL, Bat chConvert er. PARALLEL and

Bat chConvert er. BATCH. Thefirst mode is more or less for benchmarking the other
two, it converts the images one after another sequentially. The second mode uses paralléel
processing, it runsin it's default setting on all available processors. The last mode uses
convert's ability to process more than one image at the same time:

convert inmagel.jpg inage2.jpg target %.tif
nv target 1.tif 1magel.tif
n/ target 2.tif image2.tif

On modern computers with more than one processor Bat chConvert er . PARALLEL
should be the fastest. If only one (real) processor is available,
Bat chConvert er . BATCH should make the game.

For a complete example see Test Case22. This test-case subclasses

Bat chConvert er and usesthet er mi nat ed() -method to receive a callback after
termination. After termination, the callback-methods uses the

get Fai | edConver si ons() -method of Bat chConvert er toquery alist of

Bat chConvert er. Convert Except i on-objects. These objects wrap the cause and
the index of the image responsible of the failure.

15. Debugging

Page 14

Developer's Guide

Since version 1.0 im4java has anew method | mageConmand. cr eat eScri pt () to
aid in debugging:

Thiswill dump your command and operation to a script-file. Y ou should change the
execution-permission of the file and try the script to make sure that you in fact generate
the commandline you intend to use.

Note that on windows-platforms, cr eat eScr i pt () -method will automatically add the
extension . cnd to the filename passed to the method.

Page 15

	1 Introduction
	2 Before you begin: Setting up the Environment
	3 Simple Use
	4 About ImageCommand
	5 Using GraphicsMagick
	6 Reusing Operations
	7 Adding Operations to Operations
	8 Dynamic Operations
	9 Capturing Output
	10 Piping
	11 Using BufferedImages
	12 Asynchronous Execution
	13 Parallel Processing
	13.1 The ProcessExecutor
	13.2 Waiting for process termination
	13.3 Exit status of finished asynchronous processes

	14 Utilities
	14.1 Image Information
	14.2 FilenameLoader
	14.3 FilenamePatternResolver
	14.4 BatchConverter

	15 Debugging

