
Developer's Guide

Table of contents

1 Introduction.. 2

2 Before you begin: Setting up the Environment.. 2

3 Simple Use... 2

4 About ImageCommand.. 3

5 Using GraphicsMagick...3

6 Reusing Operations.. 4

7 Adding Operations to Operations...5

8 Dynamic Operations...6

9 Capturing Output..6

10 Piping..6

11 Using BufferedImages.. 7

12 Asynchronous Execution.. 8

13 Parallel Processing..9

13.1 The ProcessExecutor.. 9

13.2 Waiting for process termination...10

13.3 Exit status of finished asynchronous processes..11

14 Utilities... 11

14.1 Image Information..11

14.2 FilenameLoader..12

14.3 FilenamePatternResolver... 12

14.4 BatchConverter...13

15 Debugging...14

Copyright © 2008-2010 Bernhard Bablok All rights reserved.

1. Introduction

This guide is an introduction to the im4java-library. You should be familiar with
java-programming and should know how to read the API documentation. Also, this is no
guide for the usage of the underlying tools (ImageMagick, GraphicsMagick and so on).
You should be familiar with them and know how to read the respective documentation.

The basic architecture of im4java is quite simple. It boils down to calling all underlying
tools simply by using a ProcessBuilder-object. All the magic of im4java ist to hide
the complexities. If you have just one simple call of an external tool in your program, you
might be better of by hardcoding the ProcessBuilder-call yourself. If you don't need
the simplicity or the advanced features of the im4java-library, your code will certainly be
faster and more efficient.

2. Before you begin: Setting up the Environment

To use the im4java-library, you should add the im4java-jarfile to you classpath. This is
the first part of the setup. The second part is optional and only necessary, if the tools you
want to use (e.g. convert or exiftool) are not on your PATH. This is typically a
problem on Windows-systems.

To setup your searchpath for the tools you have three options:

• Set the environment-variable IM4JAVA_TOOLPATH. This variable should contain a
list of directories to search for your tools separated by your platform-pathdelemiter
(on *NIX typically ":", on Windows ";").

• Globally set the searchpath from within your java-progam:

String myPath="C:\\Programs\\ImageMagick;C:\\Programs\\exiftool";
ProcessStarter.setGlobalSearchPath(myPath);

This will override any values set with IM4JAVA_TOOLPATH.
• Set the search path for an individual command:

String imPath="C:\\Programs\\ImageMagick";
ConvertCmd cmd = new ConvertCmd();
cmd.setSearchPath(imPath);

This will override any values set with IM4JAVA_TOOLPATH or with
ProcessStarter.setGlobalSearchPath().

Warning:
Note that I also encountered a problem using OpenJDK with a language-setting of LANG=de_DE.UTF-8. With LANG=C
everything worked fine. With SUN's JDK, there were no problems regardless of the language-setting.

3. Simple Use

Developer's Guide

Page 2
Copyright © 2008-2010 Bernhard Bablok All rights reserved.

http://im4java.sourceforge.net/api/
http://www.imagemagick.org
http://www.graphicsmagick.org/
../tools/index.html

Basically, to use im4java, you need objects of two classes: an ImageCommand like
ConvertCmd, and an Operation like IMOperation. The ImageCommand is
more or less static, you would create an instance once and reuse it for the lifetime of your
program. Exceptions to this rule are more advanced use cases, see the section below about
parallel processing. In contrast, the Operation is the object wrapping all the commandline
options you intend to pass to the given command. So you would typically create one
Operation for every action (resizing, conversion) you intend to do.

As an example, consider resizing an image:

// create command
ConvertCmd cmd = new ConvertCmd();

// create the operation, add images and operators/options
IMOperation op = new IMOperation();
op.addImage("myimage.jpg");
op.resize(800,600);
op.addImage("myimage_small.jpg");

// execute the operation
cmd.run(op);

4. About ImageCommand

All command-classes subclass ImageCommand, which itself subclasses
org.im4java.process.ProcessStarter. The latter class wraps
java.lang.ProcessBuilder, handles input and output streams and supports
asynchronous execution.

The ImageCommand class adds methods useful for all command-classes, things like
support for reusing operations or for dynamic operations.

Note that ImageCommand is not stateless. In the default setting, it captures everything
written to stderr. It also holds an internal process ID (unrelated to any operating system
PID) via ProcessStarter. Nevertheless, if you only use the ImageCommand in
synchronous mode, you can reuse the instance.

5. Using GraphicsMagick

GraphicsMagick is a fork of ImageMagick. GraphicsMagick has a number of advantages
compared to ImageMagick, the most prominent is it's superior performance. Since the
fork ImageMagick has improved the expressive power of it's command-line syntax,
therefore, an ImageMagick commandline is not necessarely compatible with
GraphicsMagick. But for most single-operation conversions it still is.

With im4java, you have three options if you want to use GraphicsMagick:

• use GraphicsMagick explicitely, passing the command at object-creation:

Developer's Guide

Page 3
Copyright © 2008-2010 Bernhard Bablok All rights reserved.

http://www.graphicsmagick.org/
http://www.imagemagick.org

GraphicsMagickCmd cmd = new GraphicsMagickCmd("convert");.
• use GraphicsMagick explicitely, using wrapper classes: ConvertCmd cmd = new

ConvertCmd(true);.
• decide at runtime: setting the system-property im4java.useGM to true will select

GraphicsMagick at runtime. You can use this feature to compare the results and
timings of both toolsets, provided that the commandline is compatible.

6. Reusing Operations

In the example above, image-names were hard-coded. The im4java-library supports an
alternative use. Instead of hard-coding the image-names, you just add placeholders and
resolve the image-names at execution time. This allows the reuse of operations for
example within a loop.

The following example extends the example of the first section and loops over all images
passed as method parameters:

public void resizeImages(String... pImageNames) {
// create command
ConvertCmd cmd = new ConvertCmd();

// create the operation, add images and operators/options
IMOperation op = new IMOperation();
op.addImage();
op.resize(800,600);
op.addImage();

for (String srcImage:pImageNames) {
int lastDot = srcImage.lastIndexOf('.');
String dstImage =

srcImage.substring(1,lastDot-1)+"_small.jpg";
cmd.run(op,srcImage,dstImage);

}
}

You can pass an arbitrary number of image-names to cmd.run(), you can even pass an
array of image-names. In the latter case you have to cast the array to Object[], e.g.
cmd.run(op,(Object[]) imgNames).

Note that op.addImage() is actually a short form for
op.addImage(Operation.IMG_PLACEHOLDER). You can also add more than
one placeholder at the same time with op.addImage(int count).

The op.addImage(String... images)-method also supports ImageMagick's
read-modifiers. Adding a read-modifier for hard-coded images is of course
straightforward (you just add it to the argument string). For placeholders, you add only
the read-modifier. The following two lines of code therefore have the same effect:

op.addImage("[300x200]");
op.addImage(Operation.IMG_PLACEHOLDER+"[300x200]");

Developer's Guide

Page 4
Copyright © 2008-2010 Bernhard Bablok All rights reserved.

The test-case class org.im4java.test.TestCase7 uses read-modifiers to crop the
source-images prior to composing them:

IMOperation op = new IMOperation();
op.blend(50);
op.addImage("[300x200+0+0]"); // read and crop first image
op.addImage("[300x200+0+0]"); // read and crop second image
op.addImage(); // output image

CompositeCmd composite = new CompositeCmd();
composite.run(op,"rose1.jpg","rose2.jpg",outfile);

7. Adding Operations to Operations

Im4java supports a second variant of operation-reuse. You can define one Operation
and just add it to another one. The following snippet defines a
rotate-resize-frame-operation and adds it to another operation:

IMOperation frame = new IMOperation();
frame.rotate("90");
frame.resize(640);
frame.border(10,10);

IMOperation row = new IMOperation();
row.addImages(3);
row.add(frame);
row.p_append();

Adding operations as just described is valid for all supported im4java-tools.
ImageMagick additionally supports options and operations within parenthesis thus
limiting the effect of settings and operators on everything within the parenthesis. You add
parenthesis with the methods op.openOperation() and
op.closeOperation():

IMOperation frame = new IMOperation();
frame.openOperation();
frame.rotate("90");
frame.resize(640);
frame.border(10,10);
frame.closeOperation();

An alternatative way of coding this is:

IMOperation frame = new IMOperation();
frame.rotate("90");
frame.resize(640);
frame.border(10,10);

IMOperation row = new IMOperation();
row.addImages(3);

Developer's Guide

Page 5
Copyright © 2008-2010 Bernhard Bablok All rights reserved.

http://www.imagemagick.org

row.addSubOperation(frame);
row.p_append();

The op.addSubOperation()-method just adds the surrounding parenthesis.

8. Dynamic Operations

Dynamic Operations are an advanced technique. Sometimes you only want to apply some
operations to images fulfilling some requirements. ImageMagick itself has some special
option-flags for this purpose, e.g. an image is only scaled (down) if it has a larger size
than the target-size. For special cases not directly supported by ImageMagick, you can
make use of im4java's Dynamic Operations. Basically, you implement the interface
org.im4java.core.DynamicOperation, which has exactly one method
resolveOperation(). At execution time, this method gets all argument images passed as
parameters, and it must return an Operation. The returned object could also be null, in
this case no Operation is added.

The test-case class org.im4java.test.TestCase11 shows an example of
dynamic operations. In this case, the despeckle() method is only added for images
with a high iso-noise level.

9. Capturing Output

The default behaviour of all ImageCommands is to pass all output of the wrapped
commands to stdout, and to capture everything from stderr in an
CommandException-object. You can change this behaviour with the methods
ImageCommand.setOutputConsumer(OutputConsumer oc) and
ImageCommand.setErrorConsumer(ErrorConsumer ec). Both
OutputConsumer and ErrorConsumer are interfaces in the
org.im4java.process-package with single methods (consumeOutput() and
consumeError()). These methods just read everything from the argument
InputStream.

In the process-package there is an utility-class called ArrayListOutputConsumer
which collects all lines of output in a String-array.

10. Piping

Most commandline tools allow piping of input or output. With the im4java-library you
can create instances of org.im4java.process.Pipe to mimic this behaviour. This
class implements the OutputConsumer and ErrorConsumer-interfaces mentioned
above and are useful for piping the output of a commandline tool to an OutputStream
(e.g. a network-socket). To use the pipe, instantiate it with an OutputStream and use
the method ImageCommand.setOutputConsumer(pipe).

If you want to provide input to stdin of a commandline tool, you have to create a

Developer's Guide

Page 6
Copyright © 2008-2010 Bernhard Bablok All rights reserved.

http://www.imagemagick.org

pipe-object initialized with an InputStream and use the method
ImageCommand.setInputProvider(pipe). The pipe will read from the
InputStream and write to the stdin of the respective ImageCommand.

The test-case org.im4java.test.TestCase10 features pipes, reading from one
image and writing to another. In real-life, you would of course process the files directly,
but the example just wants to demonstrate what to do:

IMOperation op = new IMOperation();
op.addImage("-"); // read from stdin
op.addImage("tif:-"); // write to stdout in tif-format

// set up pipe(s): you can use one or two pipe objects
FileInputStream fis = new FileInputStream(iImageDir+"ipomoea.jpg");
FileOutputStream fos = new FileOutputStream(iImageDir+"ipomoea.tif");
// Pipe pipe = new Pipe(fis,fos);
Pipe pipeIn = new Pipe(fis,null);
Pipe pipeOut = new Pipe(null,fos);

// set up command
ConvertCmd convert = new ConvertCmd();
convert.setInputProvider(pipeIn);
convert.setOutputConsumer(pipeOut);
convert.run(op);
fis.close();
fos.close();

11. Using BufferedImages

A BufferedImage is in a way the java native representation of an image-object. No
commandline tool can deal directly with a BufferedImage. The good news is that
im4java uses objects of type BufferedImage transparently, if you use pass these
objects at invocation time:

IMOperation op = new IMOperation();
op.addImage(); // input
op.blur(2.0).paint(10.0);
op.addImage(); // output

ConvertCmd convert = new ConvertCmd();
BufferedImage img = ...;
String outfile = ...;
...
convert.run(op,img,outfile);

Note that the above use of BufferedImages works fine for input-images. If you need
to write to a BufferedImage, you must pipe the output of the commandline-tool to
stdout, create an instance of the class
org.im4java.core.Stream2BufferedImage and set it as the
OutputConsumer of the command:

Developer's Guide

Page 7
Copyright © 2008-2010 Bernhard Bablok All rights reserved.

IMOperation op = new IMOperation();
op.addImage(); // input
....
op.addImage("png:-"); // output: stdout
...
images = ...;

// set up command
ConvertCmd convert = new ConvertCmd();
Stream2BufferedImage s2b = new Stream2BufferedImage();
convert.setOutputConsumer(s2b);

// run command and extract BufferedImage from OutputConsumer
convert.run(op,(Object[]) images);
BufferedImage img = s2b.getImage();

12. Asynchronous Execution

Long running operations belong into a seperate thread, especially in graphical
applications. The im4java-library supports asynchronous execution with and without
callbacks.

The latter case is simple (fire-and-forget). Befor you start the command, you just set the
aynchronous-mode to true:

ConvertCmd cmd = new ConvertCmd();
cmd.setAsyncMode(true);
...
cmd.run(op);

In this case, you will know nothing about success or failure. If you need feedback (e.g.
because you want to asynchronously convert a file and load the result into a window), you
must write a class implementing the interface
org.im4java.process.ProcessEventListener. This interface defines three
methods: processInitiated(), processStarted() and
processTerminated(). The first method is called synchronously from the original
thread calling the run-method, the latter two methods are callbacks from the
asynchronous thread. See org.im4java.test.TestCase16 for a complete
example.

With cmd.setAsyncMode(true) you only need minimal code-changes for
asynchronous execution. If you prefer to control the flow of execution yourself, you could
use some standard methods from java.util.concurrent to control execution:

ProcessTask pt = cmd.getProcessTask(op);
ExecutorService exec = Executors.newSingleThreadExecutor();
exec.execute(pt);
exec.shutdown();

Developer's Guide

Page 8
Copyright © 2008-2010 Bernhard Bablok All rights reserved.

The test-case 16a will give you a complete example. The third variant, test-case 16b
replaces the standard executor returned by
Executors.newSingleThreadExecutor() with an instance of class
org.im4java.process.ProcessExecutor. For a discussion of this class,
proceed to the next section.

13. Parallel Processing

The use case described above is fine for typical graphical applications with one
asynchronous thread. In contrast, if you want to convert a number of files
asynchronously, additional problems arise. Consider the following piece of code:

// load images into an array, e.g. from a directoy
ArrayList<String> images = load(myDir);

// convert all images
ConvertCmd cmd = new ConvertCmd();
cmd.setAsyncMode(true);
Operation op = ...;
for (String img:images) {
String outfile = ...;
cmd.run(op,img,outfile);

}

Although this will run perfectly fine, this code will flood your system with parallel
convert-processes, making your system unusable for a while. So one of the issues is
ressource management. Another issue is that you don't know when you are finished. In
addition, you don't know which of your conversions succeeded and which failed.

The following sections deal with these three issues. This is advanced stuff, and you might
not even need it. If you have to convert multiple images, you could first try to use the
class org.im4java.utils.BatchConverter, which uses the building blocks
described below. The class BatchConverter is covered here.

13.1. The ProcessExecutor

The classes in java.util.concurrent address these issues. All classes returned by
the factory class java.util.concurrent.Executors operate on threads. They
provide methods to queue and start requests up to a given limit, and also allow you to
stop the queue and destroy running threads.

There is one big drawback with these thread-based executors. Once an ImageCommand
is running within a java-thread, the thread will not be killable due to the active process.
Therefore you should not use any of the standard executors, but use an instance of the
class org.im4java.process.ProcessExecutor. A basic usage is very simple,
the example above then looks like this:

// load images into an array, e.g. from a directoy

Developer's Guide

Page 9
Copyright © 2008-2010 Bernhard Bablok All rights reserved.

ArrayList<String> images = load(myDir);

// convert all images
ProcessExecutor exec = new ProcessExecutor();
Operation op = ...;
for (String img:images) {
String outfile = ...;
ConvertCmd cmd = new ConvertCmd();
ProcessTask pt = cmd.getProcessTask(op,img,outfile);
exec.execute(pt);

}
exec.shutdown();

The default constructor of ProcessExecutor will query the number of processors on
the system and limit the number of parallel running processes to that number. You can
also pass an integer to the constructor if you want to set the limit yourself.

The class ProcessTask extends java.util.concurrent.FutureTask. You
can use all the standard methods of this class, e.g. to query results or to wait for
termination.

13.2. Waiting for process termination

It is usually important to know when your processes have finished, maybe to give
feedback to a user by updating a progress bar or to start some follow-up activity. If the
processes take too long, you might also consider killing them.

Since ProcessExecutor extends
java.util.concurrent.ThreadPoolExecutor, you can use the standard
methods provided by this class. If you want to block until your processes terminate, you
would use the following code snippet (this one extends the example above):

ProcessExecutor exec = new ProcessExecutor();
for (String img:images) {
...
}
exec.shutdown();
if (exec.awaitTermination(10,TimeUnit.SECONDS)) {
System.err.println("processes terminated on their own");

} else {
System.err.println("trying to cancel all running processes ...");
exec.shutdownNow();

}

As an alternative to the blocking awaitTermination()-call you could also subclass
ProcessExecutor and implement it's terminated()-method. Then you will
receive a callback once all processes have terminated.

One final warning: the code implementing the parallel processing of commands is new
and therefore untested in the wild. During development, a number of race-conditions
came up (and were solved), but feedback on stability, functionality and implementation is

Developer's Guide

Page 10
Copyright © 2008-2010 Bernhard Bablok All rights reserved.

highly welcome.

13.3. Exit status of finished asynchronous processes

The last issue with asynchronous processes is the exit status. For a single asynchronous
process this is quite simple, you would implement a ProcessEventListener and
use it's processTerminated()-method (see the section Asynchronous Execution
above).

For multiple parallel process the situation is a bit more complicated. You have to link the
processTerminated-event with the correct process. The class ProcessEvent
implements a number of methods which help to identify the process. One is
ProcessEvent.getPID(). The PID is an internal field of each ImageCommand.
You can set this field explicitly overriding the PID set during object-creation. You can
also query the ImageCommand object itself with
ProcessEvent.getProcessStarter() (remenber that ProcessStarter is
the base-class of ImageCommand).

For a complete example using these methods, see the class
org.im4java.test.TestCase21.

14. Utilities

This section describes a number of utility-classes which facilitate the coding.

14.1. Image Information

If you only want to query image-information (e.g. width and height), you could typically
use the class IdentifyCmd, wrapping ImageMagick's identify-command. Instead of
using this class directly, you could instead use the Info class. The following
code-snippet demonstrates its use:

Info imageInfo = new Info(filename,true);
System.out.println("Format: " + imageInfo.getImageFormat());
System.out.println("Width: " + imageInfo.getImageWidth());
System.out.println("Height: " + imageInfo.getImageHeight());
System.out.println("Geometry: " + imageInfo.getImageGeometry());
System.out.println("Depth: " + imageInfo.getImageDepth());
System.out.println("Class: " + imageInfo.getImageClass());

The second parameter (true) in the example requests basic-information. This is a bit faster
than requesting and parsing the complete (verbose) output of the class IndentifyCmd.
See the test-case class org.im4java.test.TestCase8 for a complete example.

Prior to version 1.3.0 the implementation of the Info-class was severely flawed. It did
not take into account that there are image-formats like TIF or GIF that support multiple
images (ImageMagick calls them scenes) within a single file. As a consequence, the

Developer's Guide

Page 11
Copyright © 2008-2010 Bernhard Bablok All rights reserved.

method

imageInfo.getImageWidth()

returns the image-width of the first scene (from basic-information), whereas the method

imageInfo.getProperty("Width")

will return the image-width of the last scene (from complete information). Starting with
version 1.3.0, there are new methods with an additional parameter, the scene-number, e.g.

imageInfo.getImageWidth(3)
imageInfo.getProperty("Width",3)

To query the number of scenes use the method getSceneCount(). Note that
information about multiple scenes is only available with complete-information.

Note that parsing the output of identify -verbose is inherently flawed, since this
output is meant to be human-readable and not an an interface for computer programs. The
parser makes a number of assumptions about the output, some of them are known to be
incorrect in special situations (e.g. multi-line attribute-values with embedded colons).
Also note that basic-information should always be correct, since it uses a different method
to aquire the information. As an alternative to the Info-class you might consider using
the wrapper class ExiftoolCmd for exiftool.

14.2. FilenameLoader

The class org.im4java.utils.FilenameLoader is useful for batch-processing a
number of files from a directory. The core method is public List<String>
loadFilenames(String pDir). It loads all files from the given directory into a
list of strings.

The constructor accepts an ExtensionFilter. You can instantiate your own filter as
in the example below or use one of the predefined filters of the ExtensionFilter-class.

ExtensionFilter filter = new ExtensionFilter("jpg");
filter.setRecursion(true);
filter.ignoreDotDirs(true);
FilenameLoader loader = new FilenameLoader(filter);
List<String> files = loader.loadFilenames(mydir);

As always, you should check the API-documentation for all the features of this class.

14.3. FilenamePatternResolver

When converting multiple files, the target filename usually depends on the source
filename. For example a standard conversion from jpg to tif would keep the filename and

Developer's Guide

Page 12
Copyright © 2008-2010 Bernhard Bablok All rights reserved.

http://im4java.sourceforge.net/api/

just change the extension. Or all converted files should additionally go to a separate
directory.

This is where the class org.im4java.utils.FilenamePatternResolver is
useful. The following snippet will convert all argument-files to tif.

// define operation and command
IMOperation op = new IMOperation();
op.addImage(); // input-file
op.addImage(); // output-file
ConvertCmd cmd = new ConvertCmd();

// load files
ExtensionFilter filter = new ExtensionFilter("jpg");
FilenameLoader loader = new FilenameLoader(filter);
List<String> files = loader.loadFilenames(mydir);

// create the resolver
FilenamePatternResolver resolver =

new FilenamePatternResolver("%P/%f.tif");

// now iterate over all files
for (String img:files) {
cmd.run(op,img,resolver.createName(img));

}

The FilenamePatternResolver recognizes the following escape-sequences within it's
pattern:

• %P: full pathname of source-image (i.e. the directory)
• %p: last component of %P
• %F: full filename without directory part
• %f: filename without directory part and extension
• %e: only the extension
• %D: drive-letter (on windows systems). Not available for source-files with an

UNC-name.

14.4. BatchConverter

The class org.im4java.utils.BatchConverter is a utility-class for
client-applications. It will convert a given list of files in parallel making use of all
available processors to speed up execution. It is not well suited for web-applications,
since you don't want a single request to use up all of your ressources.

Usage of this utility-class is straightforward. First you load your files into a List. This
could be from a GUI-application where a user selects multiple files. Or the list could
contain all files from a given directory (see the section FilenameLoader above).

ExtensionFilter filter = new ExtensionFilter("jpg");
filter.setRecursion(false);
FilenameLoader loader = new FilenameLoader(filter);

Developer's Guide

Page 13
Copyright © 2008-2010 Bernhard Bablok All rights reserved.

List<String> images=loader.loadFilenames(dir);

After you have the list, you create your BatchConverter and use it's run()-method
to process the images:

// create a simple thumbnail operation
op = new IMOperation();
op.size(80);
op.addImage(); // placeholder input filename
op.thumbnail(80);
op.addImage(); // placeholder output filename

// create a template for the output-files:
// we put them in targetDir with the same filename as the original
// images
String template=targetDir+"%F";

// create instance of BatchConverter and convert images
BatchConverter bc = new BatchConverter(BatchConverter.Mode.PARALLEL);
bc.run(op,images,targetDir+"%F");

Since BatchConverter extends ProcessExecutor, you can use the methods
described in the section about process termination to wait for the termination of the
command (note that the shutdown()-method is called automatically).

The class BatchConverter knows three modes of operation:
BatchConverter.SEQUENTIAL, BatchConverter.PARALLEL and
BatchConverter.BATCH. The first mode is more or less for benchmarking the other
two, it converts the images one after another sequentially. The second mode uses parallel
processing, it runs in it's default setting on all available processors. The last mode uses
convert's ability to process more than one image at the same time:

convert image1.jpg image2.jpg target_%d.tif
mv target_1.tif image1.tif
mv target_2.tif image2.tif

On modern computers with more than one processor BatchConverter.PARALLEL
should be the fastest. If only one (real) processor is available,
BatchConverter.BATCH should make the game.

For a complete example see TestCase22. This test-case subclasses
BatchConverter and uses the terminated()-method to receive a callback after
termination. After termination, the callback-methods uses the
getFailedConversions()-method of BatchConverter to query a list of
BatchConverter.ConvertException-objects. These objects wrap the cause and
the index of the image responsible of the failure.

15. Debugging

Developer's Guide

Page 14
Copyright © 2008-2010 Bernhard Bablok All rights reserved.

Since version 1.0 im4java has a new method ImageCommand.createScript() to
aid in debugging:

IMOperation op = new IMOperation();
...
ConvertCmd cmd = new ConvertCmd();
cmd.createScript("myscript.sh",op);

This will dump your command and operation to a script-file. You should change the
execution-permission of the file and try the script to make sure that you in fact generate
the commandline you intend to use.

Note that on windows-platforms, createScript()-method will automatically add the
extension .cmd to the filename passed to the method.

Developer's Guide

Page 15
Copyright © 2008-2010 Bernhard Bablok All rights reserved.

	1 Introduction
	2 Before you begin: Setting up the Environment
	3 Simple Use
	4 About ImageCommand
	5 Using GraphicsMagick
	6 Reusing Operations
	7 Adding Operations to Operations
	8 Dynamic Operations
	9 Capturing Output
	10 Piping
	11 Using BufferedImages
	12 Asynchronous Execution
	13 Parallel Processing
	13.1 The ProcessExecutor
	13.2 Waiting for process termination
	13.3 Exit status of finished asynchronous processes

	14 Utilities
	14.1 Image Information
	14.2 FilenameLoader
	14.3 FilenamePatternResolver
	14.4 BatchConverter

	15 Debugging

